The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

Bioresour Technol

Department of Soil Water and Environmental Science, The University of Arizona, P.O. Box 210038, Tucson, AZ 85721-0038, United States.

Published: November 2016

The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.08.079DOI Listing

Publication Analysis

Top Keywords

aquaponics nutrient
16
nutrient solution
8
nutrient solutions
8
free phosphate
8
phosphate ions
8
ions solution
8
solution high
8
aquaponics
5
nutrient
5
phosphorus availability
4

Similar Publications

This study explores the effects of varying exposure times of microelement fertilization on hydrochemical parameters, plant growth, and nutrient content in an aquaponic system cultivating L. (pepper) with ( L.).

View Article and Find Full Text PDF

In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture.

View Article and Find Full Text PDF

Enhancing fish sludge bioconversion kinetics for nutrient recovery in aquaponics using a modified biological aerated filter with a novel media of polyhedral hollow spheres.

J Environ Manage

January 2025

School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China. Electronic address:

Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved.

View Article and Find Full Text PDF

Aquaponic systems are food production systems that combine aquaculture and hydroponic in a closed recirculation system where water provides nutrients to plants while plants purify water for fish. In this system, tilapia is the most commonly cultured fish and can be easily integrated with vegetable cultivation. However, tilapia host a diverse microbiota some of which are pathogenic and can infect humans.

View Article and Find Full Text PDF

Impacts of and spp. on Pac Choi ( var. chinensis) grown in different hydroponic systems.

Front Plant Sci

September 2024

Urban Horticulture and Sustainability Laboratory, Texas Tech University, Plant and Soil Science, Lubbock, TX, United States.

Soilless production systems (i.e hydroponics, aeroponics, aquaponics) have become commonplace in urban settings and controlled environments. They are efficient nutrient recyclers, space savers, and water conservers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!