Universal correlations between shocks in the ground state of elastic interfaces in disordered media.

Phys Rev E

CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 rue Lhomond, 75005 Paris, France.

Published: July 2016

The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation of external parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface to a parabolic potential centered at w, we study the avalanches which occur as w is varied. We are interested in the correlations between the avalanche sizes S_{1} and S_{2} occurring at positions w_{1} and w_{2}. Using the functional renormalization group (FRG), we show that correlations exist for realistic interface models below their upper critical dimension. Notably, the connected moment 〈S_{1}S_{2}〉^{c} is up to a prefactor exactly the renormalized disorder correlator, itself a function of |w_{2}-w_{1}|. The latter is the universal function at the center of the FRG; hence, correlations between shocks are universal as well. All moments and the full joint probability distribution are computed to first nontrivial order in an ε expansion below the upper critical dimension. To quantify the local nature of the coupling between avalanches, we calculate the correlations of their local jumps. We finally test our predictions against simulations of a particle in random-bond and random-force disorder, with surprisingly good agreement.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.012110DOI Listing

Publication Analysis

Top Keywords

correlations shocks
8
ground state
8
state elastic
8
frg correlations
8
upper critical
8
critical dimension
8
universal correlations
4
shocks ground
4
elastic interfaces
4
interfaces disordered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!