The development of a useful methodology for simple, scalable, and transformative automation of oligosaccharide synthesis that easily interfaces with existing methods is reported. The automated synthesis can now be performed using accessible equipment where the reactants and reagents are delivered by the pump or the autosampler and the reactions can be monitored by the UV detector. The HPLC-based platform for automation is easy to setup and adapt to different systems and targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496006 | PMC |
http://dx.doi.org/10.1021/acs.joc.6b01439 | DOI Listing |
Microbiology (Reading)
January 2025
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.
Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Kunming Institute of Botany Chinese Academy of Sciences, State Key Laboratory of Phytochemistry and Plant Resources in West China, 132 Lanhei Road, 650201, Kunming, CHINA.
A polysaccharide APS-1 II from a medicinal plant Angelica sinensis represents an interesting therapeutic agent against leukemia. However, the synthetic accessibility of the highly branched and complex APS-1 II polysaccharide with multiple 1, 2-cis-glycosidic linkages remains a difficult task, impeding the in-depth structure-activity relationship biological studies and the development of carbohydrates-based therapeutics against leukemia. Here, we report the first chemical synthesis of tridecasaccharide repeating unit together with shorter sequences 4-mer, 6-mer and 9-mer from APS-1 II polysaccharide via one-pot orthogonal glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which precluded the potential issues such as aglycone transfer associated with one-pot assembly with thioglycosides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Georgia, Complex Carbohydrate Research Center and Department of Chemistry, 315 Riverbend Road, 30602, Athens, UNITED STATES OF AMERICA.
Sulfoglycolipids are an important class of acidic glycosphingolipids implicated in a multitude of biological processes. Little is known about the interactome of sulfated gangliosides, and it is not well understood how a possible interplay between sialylation and sulfation influences molecular recognition. We describe a chemoenzymatic strategy that readily provided a panel of twenty-one sulfated and sialylated ganglio-oligosaccharides.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
March 2024
School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.
Raffinose Family Oligosaccharides (RFOs) are a kind of polysaccharide containing D-galactose, and they widely exist in higher plants. Synthesis of RFOs begins with galactinol synthase (GolS; EC 2.4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!