Isolated Ground-State Vibrational Coherence Measured by Fifth-Order Single-Shot Two-Dimensional Electronic Spectroscopy.

J Phys Chem Lett

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Published: September 2016

Vibrations play a critical role in many photochemical and photophysical processes in which excitations reside on the electronically excited state. However, difficulty in assigning signals from spectroscopic measurements uniquely to a specific electronic state, ground or otherwise, has exposed limitations to their physical interpretation. Here, we demonstrate the selective excitation of vibrational coherences on the ground electronic state through impulsive Raman scattering, whose weak fifth-order signal is resonantly enhanced by coupling to strong electronic transitions. The six-wave mixing signals measured using this technique are free of lower-order cascades and represent correlations between zero-quantum vibrational coherences in the ground state and single-quantum coherences between the ground and electronic states. We believe that this technique has the potential to shed much-needed insight onto some of the mysteries regarding the origin of long-lived coherences observed in photosynthetic and other coupled chromophore systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.6b01733DOI Listing

Publication Analysis

Top Keywords

coherences ground
12
electronic state
8
vibrational coherences
8
ground electronic
8
electronic
5
isolated ground-state
4
ground-state vibrational
4
vibrational coherence
4
coherence measured
4
measured fifth-order
4

Similar Publications

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Bovine brucellosis and bovine tuberculosis are zoonotic diseases with economic and public health importance across the world, especially in developing countries where the diseases are endemic. The diseases are classified as neglected diseases in developing nations with poor resources despite good control measures in some developed countries. The purpose of this study is to assess the knowledge, attitudes and perceptions (KAP) of stakeholders towards control measures for bovine brucellosis (BR) and bovine tuberculosis (bTB) at a livestock-wildlife interface.

View Article and Find Full Text PDF

Single GAF domain phytochrome exhibits a pH-dependent shunt on the millisecond timescale.

Chemphyschem

January 2025

Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY.

The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.

View Article and Find Full Text PDF

Mixed mathematics and metaphysical physics: Descartes and the mechanics of the flow of water.

Stud Hist Philos Sci

December 2024

Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. Electronic address:

Descartes' systematic physics had little to do with his quantitative accounts of natural phenomena. The former was metaphysical and was concerned with uncovering the causes operating in nature, while the latter dealt with establishing mathematical relations between various natural quantities. I reconstruct a dominant interpretation in recent literature which argues that the two practices are autonomous, and that quantitative problem-solving is normatively subordinated to metaphysical physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!