The development of cell biology, molecular biology, and material science, has been propelling biomimic tissue-engineered skins to become more sophisticated in scientificity and more simplified in practicality. In order to improve the safety, durability, elasticity, biocompatibility, and clinical efficacy of tissue-engineered skin, several powerful seed cells have already found their application in wound repair, and a variety of bioactive scaff olds have been discovered to influence cell fate in epidermogenesis. These exuberant interests provide insights into advanced construction strategies for complex skin mimics. Based on these exciting developments, a complete full-thickness tissue-engineered skin is likely to be generated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978104 | PMC |
http://dx.doi.org/10.4103/2321-3868.118928 | DOI Listing |
Nanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Formamidinium lead triiodide (FAPbI) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI phases, especially under humid conditions, which severely diminishes the device performance of FAPbI PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI perovskites in humid air.
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!