Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

Philos Trans R Soc Lond B Biol Sci

Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA

Published: October 2016

Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003860PMC
http://dx.doi.org/10.1098/rstb.2015.0360DOI Listing

Publication Analysis

Top Keywords

neural activity
16
wide-field optical
12
optical mapping
8
large areas
8
neural
5
wfom
5
wide-field
4
mapping neural
4
activity
4
activity brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!