Parameter estimation of perfusion models in dynamic contrast-enhanced imaging: a unified framework for model comparison.

Med Image Anal

Laboratory of Mathematics in Interaction with Computer Science, CentraleSupélec, Chatenay Malabry.

Published: January 2017

Patients follow-up in oncology is generally performed through the acquisition of dynamic sequences of contrast-enhanced images. Estimating parameters of appropriate models of contrast intake diffusion through tissues should help characterizing the tumour physiology. However, several models have been developed and no consensus exists on their clinical use. In this paper, we propose a unified framework to analyse models of perfusion and estimate their parameters in order to obtain reliable and relevant parametric images. After defining the biological context and the general form of perfusion models, we propose a methodological framework for model assessment in the context of parameter estimation from dynamic imaging data: global sensitivity analysis, structural and practical identifiability analysis, parameter estimation and model comparison. Then, we apply our methodology to five of the most widely used compartment models (Tofts model, extended Tofts model, two-compartment model, tissue-homogeneity model and distributed-parameters model) and illustrate the results by analysing the behaviour of these models when applied to data acquired on five patients with abdominal tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2016.07.008DOI Listing

Publication Analysis

Top Keywords

parameter estimation
12
perfusion models
8
unified framework
8
model
8
framework model
8
model comparison
8
tofts model
8
models
7
estimation perfusion
4
models dynamic
4

Similar Publications

Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

January 2025

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.

View Article and Find Full Text PDF

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction.

View Article and Find Full Text PDF

Intensive longitudinal data, increasingly common in social and behavioral sciences, often consist of multivariate time series from multiple individuals. Dynamic factor analysis, combining factor analysis and time series analysis, has been used to uncover individual-specific processes from single-individual time series. However, integrating these processes across individuals is challenging due to estimation errors in individual-specific parameter estimates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!