Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027461PMC
http://dx.doi.org/10.1073/pnas.1607734113DOI Listing

Publication Analysis

Top Keywords

conserved methionine
12
calcium magnesium
12
transition metals
8
nramp metal-binding
8
metal-binding site
8
transition metal
8
methionine dictates
4
dictates substrate
4
substrate preference
4
preference nramp-family
4

Similar Publications

Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing HO.

Cell Res

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.

Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

Small RNA CjNC110 regulates the activated methyl cycle to enable optimal chicken colonization by .

mSphere

January 2025

Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.

Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen . In this study, we utilized IA3902 (a representative isolate of the sheep abortion clone) and W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110.

View Article and Find Full Text PDF

Biochemical Characteristics of Urine Metabolomics in Female Giant Pandas at Different Estrous Stages.

Animals (Basel)

December 2024

Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The composition of urinary metabolites can reflect the physiological state of animals. Investigating the alterations in urine metabolomics during the estrus stage can provide valuable insights for enhancing the efficacy of estrus monitoring. This study aimed to perform an analysis of urinary metabolomics in female giant pandas, specifically examining the variations in specific metabolites across different estrous stages, namely, diestrus, proestrus, estrus, and metestrus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!