Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL-1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0031182016001451DOI Listing

Publication Analysis

Top Keywords

thuringiensis var
20
var israelensis
20
cry11aa toxin
20
bacillus thuringiensis
8
israelensis cry11aa
8
toxin haemonchus
8
haemonchus contortus
8
israelensis recombinant
8
coli expressing
8
expressing cry11aa
8

Similar Publications

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

Susceptibility to organophosphate insecticides in Aedes aegypti (Diptera: Culicidae) from northern Colombia and associated resistance mechanisms.

Parasit Vectors

January 2025

Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia.

Background: Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae.

View Article and Find Full Text PDF

Mosquitoes, particularly , pose significant public health risks by transmitting diseases like dengue, zika and chikungunya. var. (BTI) is a crucial larvicide targeting mosquitoes while sparing other organisms and the environment.

View Article and Find Full Text PDF

Potential of Bacillus thuringiensis isolates to manage Gonipterus platensis (Coleoptera: Curculionidae) larvae populations.

Environ Entomol

December 2024

Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil.

The growing expansion of eucalyptus plantations in Brazil and the impact of exotic pests, such as Gonipterus platensis, demand effective, and sustainable biological control strategies. The aim of this study was to assess the pathogenicity of 10 Bacillus thuringiensis (Bt) isolates to neonate Gonipterus platensis larvae, commonly known as the eucalyptus weevil (Coleoptera: Curculionidae) with the specific focus of evaluating their potential to manage this pest while preserving its egg parasitoid, Anaphes nitens. To achieve this, the genomic DNA of the 10 Bt isolates was extracted using the thermal lysis method for molecular characterization of their Cry and Vip proteins.

View Article and Find Full Text PDF

Distinct biological control agents differentially modulate the immune system of the sugarcane borer larvae (Diatraea saccharalis).

J Invertebr Pathol

December 2024

Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Parque Estação Biológica - PqEB, 70770-901, Brasília, DF, Brazil. Electronic address:

The humoral response plays a crucial role in insect defense against parasites and pathogens, typically producing antimicrobial peptides through the Toll, IMD, and Jak-STAT signaling pathways, as well as melanization via phenoloxidases. However, many studies use nonpathogenic or opportunistic organisms and often infect insects in nonnatural ways, such as piercing or injecting the pathogen into the hemocoel. The objective of this study was to examine the modulation of the main humoral pathway genes involved in the interaction between the nonmodel organism Diatraea saccharalis (the sugarcane borer) and different biological control agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!