Oxygen Sensing Mechanisms: A Physiological Penumbra.

Adv Exp Med Biol

Clinical Research Center, National Hospital Organization Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.

Published: September 2017

This review tackles the unresolved issue of the existence of oxygen sensor in the body. The sensor that would respond to changes in tissue oxygen content, possibly along the hypoxia-normoxia-hyperoxia spectrum, rather than to a given level of oxygen, and would translate the response into lung ventilation changes, the major adaptive process. Studies on oxygen sensing, for decades, concentrated around the hypoxic ventilatory response generated mostly by carotid body chemoreceptor cells. Despite gaining a substantial insight into the cellular transduction pathways in carotid chemoreceptors, the exact molecular mechanisms of the chemoreflex have never been conclusively verified. The article briefly sums up the older studies and presents novel theories on oxygen, notably, hypoxia sensing. These theories have to do with the role of transient receptor potential cation TRPA1 channels and brain astrocytes in hypoxia sensing. Although both play a substantial role in shaping the ventilatory response to hypoxia, neither can yet be considered the ultimate sensor of hypoxia. The enigma of oxygen sensing in tissue still remains to be resolved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/5584_2016_67DOI Listing

Publication Analysis

Top Keywords

oxygen sensing
12
ventilatory response
8
hypoxia sensing
8
oxygen
7
sensing mechanisms
4
mechanisms physiological
4
physiological penumbra
4
penumbra review
4
review tackles
4
tackles unresolved
4

Similar Publications

Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.

Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions.

View Article and Find Full Text PDF

Sensing array based on imidazole-regulated Cu@MOFs nanozymes with enhanced laccase-like activity for the discrimination of phenolic pollutants.

Anal Chim Acta

February 2025

School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China; Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China. Electronic address:

Background: Phenolic pollutants with high toxicity and low biodegradability can disrupt environmental balance and severely affect human health, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple phenolic pollutants.

Results: Herein, we developed a four-dimensional colorimetric sensor array based on imidazole-modulated Cu@MOFs for distinguishing and determining phenolic pollutants. Wherein, four Cu@MOFs (ATP@Cu, ADP@Cu, AMP@Cu, and GMP@Cu) nanozyme with laccase-like activity were firstly prepared, and a novel strategy of imidazole-containing molecules-regulated was proposed to improve the laccase-like activity of Cu@MOFs nanozymes.

View Article and Find Full Text PDF

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

In recent years, the Telaaobao Mineral Area in the Northwestern Ordos Basin has been newly discovered as a uranium mineralization area with its ore-bearing target layer located within the Lower Cretaceous Huanhe Formation, belonging to a new area and a new layer, and has great uranium deposit formation potential. In order to deeply study the issues of the ore-bearing target in this area, such as the petrology, mineralogy, and uranium mineralization of the ore-bearing sandstone, based on the data from field geological investigation and drill core logging, the petrological characteristics of the ore-bearing sandstone of the target layer are preliminarily interpreted using a polarizing microscope and a scanning electron microscope, and the uranium mineral composition, uranium occurrence state, and uranium deposit mineralization are investigated through the electron probe microanalysis technique in this paper. The results show that the target layer sandstone in the study area has the characteristics of proximal deposit and has undergone significant epigenetic alteration and transformation, producing favorable conditions for uranium- and oxygen-containing water transportation and uranium mineralization.

View Article and Find Full Text PDF

Recent advancements in artificial intelligence-enabled medical gas sensing have led to enhanced accuracy, safety, and efficiency in healthcare. Medical gases, including oxygen, nitrous oxide, and carbon dioxide, are essential for various treatments but pose health risks if improperly managed. This review highlights the integration of artificial intelligence in medical gas sensing, enhancing traditional sensors through advanced data processing, pattern recognition, and real-time monitoring capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!