Purpose: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution.
Methods: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier.
Results: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner.
Conclusions: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382183 | PMC |
http://dx.doi.org/10.1007/s11095-016-2018-x | DOI Listing |
Front Vet Sci
December 2024
Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China.
Albendazole (ABZ), classified as a class II basic drug under the Biopharmaceutics Classification System (BCS), is widely recognized for its therapeutic efficacy in treating and preventing trichuriasis. However, despite its clinical relevance, ABZ's oral administration presents challenges due to its poor solubility and pH sensitivity, which diminish its therapeutic effectiveness. Additionally, high dosing regimens of ABZ pose risks of developmental toxicity in animal models.
View Article and Find Full Text PDFAntiinflamm Antiallergy Agents Med Chem
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India.
Objective: Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns.
View Article and Find Full Text PDFYakugaku Zasshi
January 2025
Graduate School of Pharmaceutical Sciences, Osaka University.
In recent years, functional foods have attracted increasing attention due to growing health consciousness. When functional food ingredients are poorly water-soluble, they largely fail to be absorbed due to their low solubility in the digestive tract, limiting their ability to exert their functions. To develop poorly water-soluble compounds into viable functional food ingredients, it is important to increase their gastrointestinal absorption so that they can fully exert their functions, and to ensure their safety and efficacy through ADMET research.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!