The electrical characterization of single-polymer chains on a surface is an important step towards novel molecular device development. The main challenge is the lack of appropriate atomically flat insulating substrates for fabricating single-polymer chains. Here, using atomic force microscopy, we demonstrate that the (0001) surface of an insulating hexagonal boron nitride (h-BN) substrate leads to a flat-lying self-assembled monolayer of diacetylene compounds. The subsequent heating or ultraviolet irradiation can initiate an on-surface polymerization process leading to the formation of long polydiacetylene chains. The frequency of photo-polymerization occurrence on h-BN(0001) is two orders of magnitude higher than that on graphite(0001). This is explained by the enhanced lifetime of the molecular excited state, because relaxation via the h-BN is suppressed due to a large band gap. We also demonstrate that on-surface polymerization on h-BN(0001) is possible even after the lithography process, which opens up the possibility of further electrical investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/39/395303 | DOI Listing |
Sci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, 41296, Sweden.
Thermal conductivity enhancement in polymers is vital for advanced applications. This study introduces a novel method to align hexagonal boron nitride (hBN) nanosheets within polydimethylsiloxane (PDMS) matrices using a Halbach array to create a highly uniform magnetic field. This technique achieves significant improvements in thermal conductivity by effectively aligning hBN nanosheets.
View Article and Find Full Text PDFSmall
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.
Hexagonal boron nitride (hBN) is a two-dimensional material isoelectric to graphene. It has a hexagonal structure with alternating boron and nitrogen atoms and is electrically insulating, thermally conductive, and chemically inert. However, like graphene, its use as a functional nanofiller requires exfoliation.
View Article and Find Full Text PDFNanophotonics
July 2024
Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton-polaritons to guide visible light bound to an atomically thin layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!