Purpose: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response.

Materials And Methods: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises.

Results: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed.

Conclusions: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2016.1227106DOI Listing

Publication Analysis

Top Keywords

uncertainty fast
8
uncertainty
6
dose
5
fast biological
4
biological radiation
4
radiation dose
4
dose assessment
4
assessment emergency
4
emergency response
4
response scenarios
4

Similar Publications

Novel robust control with disturbance rejection for permanent magnet synchronous motors and experimental validation.

Rev Sci Instrum

January 2025

Hangzhou Huger Medical Robotics Co., Ltd., Hangzhou 310002, Zhejiang, People's Republic of China.

A novel robust control strategy is proposed in this work to address the dynamic control problem of permanent magnet synchronous motors (PMSM) position tracking and lessen the effect of system parameter and load fluctuations on the dynamic performance of PMSM. The tracking performance is improved by a robust control element built with the Lyapunov method to reduce the impact of uncertain factors such as parameter uncertainty, nonlinear friction, and external interference; the nominal control element is stabilized by the dynamics model. The uniformly bounded and uniformly final bounded systems are proven, and the associated conclusions are provided using the Lyapunov minimax approach.

View Article and Find Full Text PDF

Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins.

Phys Med Biol

January 2025

Department of Radiology Oncology, Emory University, Clifton Rd, Atlanta, Georgia, 30322-1007, UNITED STATES.

This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes.

View Article and Find Full Text PDF

This article details the religious experiences of family caregivers in living with and caring for people with chronic illnesses in Addis Ababa, Ethiopia. This phenomenological study conducted in-depth interviews with 20 family caregivers recruited from Tikur Anbessa Specialized Hospital, who accompanied their loved ones during medical appointments or hospital stays. It used a thematic analysis to analyze the collected data.

View Article and Find Full Text PDF

Background: The global burden of metabolic diseases is increasing, but estimates of their impact on primary liver cancer are uncertain. We aimed to assess the global burden of primary liver cancer attributable to metabolic risk factors, including high body mass index (BMI) and high fasting plasma glucose (FPG) levels, between 1990 and 2021.

Methods: The total number and age-standardized rates of deaths and disability-adjusted life years (DALYs) from primary liver cancer attributable to each metabolic risk factor were extracted from the Global Burden of Disease Study 1990-2021.

View Article and Find Full Text PDF

Intelligent vehicle trajectory tracking with an adaptive robust nonsingular fast terminal sliding mode control in complex scenarios.

Sci Rep

December 2024

School of Vehicle and Energy, Yanshan University, 438 West Hebei Avenue, Qinhuangdao, 066004, People's Republic of China.

This study presents a strategy for an intelligent vehicle trajectory tracking system that employs an adaptive robust non-singular fast terminal sliding mode control (ARNFTSMC) approach to address the challenges of uncertain nonlinear dynamics. Initially, a path tracking error system based on mapping error is established, along with a speed tracking error system. Subsequently, a novel ARNFTSMC strategy is introduced to tackle the uncertainties and external perturbations encountered during actual vehicle operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!