Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increases in arterial carbon dioxide tension (hypercapnia) elicit potent vasodilation of cerebral arterioles. Recent studies have also reported vasodilation of the internal carotid artery during hypercapnia, but the mechanism(s) mediating this extracranial vasoreactivity are unknown. Hypercapnia increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle cerebral artery velocity, were simultaneously assessed in 18 subjects at rest and during hypercapnia (6% carbon dioxide). Middle cerebral artery velocity increased significantly (69±10-103±17 cm/s; P<0.01) along with shear in both the internal (316±52-518±105 1/s; P<0.01) and common (188±40-275±61 1/s; P<0.01) carotids. Diameter also increased (P<0.01) in both carotid arteries (internal: +6.3±2.9%; common: +5.8±3.0%). Following hypercapnia onset, there was a significant delay between the onset of internal carotid shear (22±12 seconds) and diameter change (85±51 seconds). This time course is associated with shear-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; P<0.01). These data indicate, for the first time in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid artery. The combination of a hypercapnic stimulus and continuous noninvasive, high-resolution assessment of internal carotid shear and dilation may provide novel insights into the function and health of the clinically important extracranial arteries in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!