Introduction: Determination of the extent of spinal fusion for lumbar degenerative diseases is often difficult due to minor pathologies in the adjacent segment. Although surgical intervention is required, fusion seems to be an overtreatment. Decompression alone may be not enough as this segment is affected by multiple factors such as destabilization, low grade degeneration and an unfavorable biomechanical transition next to a rigid construct. An alternative surgical treatment is a hybrid construct, consisting of fusion and implantation of an interlaminar stabilization device at the adjacent level. The aim of this study was to compare long-term clinical outcome after lumbar fusion with a hybrid construct including an interlaminar stabilization device as "topping-off".
Materials And Methods: A retrospective analysis of 25 lumbar spinal fusions from 2003 to 2010 with additional interlaminar stabilization device was performed. Through a matched case controlled procedure 25 congruent patients who received lumbar spinal fusion in one or two levels were included as a control group. At an average follow-up of 43 months pre- and postoperative pain, ODI, SF-36 as well as clinical parameters, such as leg and back pain, walking distance and patient satisfaction were recorded.
Results: Pain relief, ODI improvement and patient satisfaction was significantly higher in the hybrid group compared to the control group. SF-36 scores improved in both groups but was higher in the hybrid group, although without significance. Evaluation of walking distance showed no significant differences.
Discussion: Many outcome parameters present significantly better long-term results in the hybrid group compared to sole spinal fusion. Therefore, in cases with a clear indication for lumbar spinal fusion with the need for decompression at the adjacent level due to spinal stenosis or moderate spondylarthrosis, support of this segment with an interlaminar stabilization device demonstrates a reasonable treatment option with good clinical outcome. Also, the length of the fusion construct can be reduced allowing for a softer and more harmonic transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00132-016-3312-3 | DOI Listing |
EClinicalMedicine
January 2025
Division of Orthopedic Surgery, Oslo University Hospital, Norway.
J Biomech Eng
January 2025
Department of orthopedics, the Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, 310000, China.
This study aims to compare the sinking and shifting of an enhanced escape-proof intervertebral fusion device with a traditional TLIF intervertebral fusion device.Five specimens each of the improved escape-resistant intervertebral cage and the traditional TLIF cage were selected. Four types of mechanical tests were conducted on each cage, Furthermore, a blade-cutting torque test was performed on the escape-resistant cage, with the recording of load-displacement curves and mechanical values.
View Article and Find Full Text PDFWound Manag Prev
December 2024
The First Affiliated Hospital, Unit of Nurses, Zhejiang University School of Medicine, Hangzhou, China.
Background: Early esophageal fistula formation following anterior cervical spine surgery presents a formidable clinical challenge, necessitating astute rehabilitative nursing management. Such fistulas, if not promptly and effectively managed, can precipitate grave complications including mediastinitis, sepsis, respiratory failure, and, in severe instances, mortality. This underscores the critical need for immediate, comprehensive nursing interventions designed to mitigate these risks and enhance patient outcomes.
View Article and Find Full Text PDFWorld Neurosurg
January 2025
Department of Orthopaedic Surgery, University of Miami Hospital, Miami, Florida, USA.
Clin Neurol Neurosurg
January 2025
Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
Objective: The purpose of this study was to evaluate the risk factors for loss of intraoperative correction, as measured by lumbar lordosis (LL), with an emphasis on rod characteristics.
Methods: A retrospective study identified patients at least 50 years of age who underwent instrumented fusion with an upper instrumented vertebrae (UIV) in the upper thoracic spine (T1-T6) or thoracolumbar junction (T10-L2) to the pelvis. Inclusion criteria included intraoperative x-rays that allowed for LL measurement, postop standing x-rays, and a minimum follow up of 24 months with the original rods still in place.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!