Personnel deployed to remote areas during infectious disease outbreaks have limited access to mechanical and chemical inactivation resources. The inactivation of infectious agents present in diagnostic samples is critical to ensure the safety of personnel and the containment of the disease. We evaluated the efficacy of thermal inactivation (exposure to 56°C for 1 hour) and chemical inactivation with 0.5% Tween-20 against a high titer of Ebola virus (species Zaire ebolavirus) variant Makona in spiked human serum samples. No surviving virus was revealed by a 50% tissue culture infective dose assay after the combined treatment under laboratory conditions. In-field use of this inactivation protocol during the 2013-2016 West Africa Ebola outbreaks demonstrated readily detectable levels of immunoglobulin G and/or immunoglobulin M in human plasma samples after treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/infdis/jiw289 | DOI Listing |
Mar Drugs
January 2025
Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
Filoviruses, mainly consisting of the two genera of and , are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection.
View Article and Find Full Text PDFJ Infect Public Health
February 2025
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Viruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFViruses
November 2024
Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!