The effectiveness of the rehabilitative benefits of physical exercise appears to be contingent upon when the exercise is initiated after stroke. The present study assessed the hypothesis that very early exercise increases the extent of apoptotic cell death via increased expression of proapoptotic proteins in a rat stroke model. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hr using an intraluminal filament and assigned to four nonexercise and three exercise groups. Exercise on a Rota-Rod was initiated for 30 min at 6 hr (considered very early), at 24 hr (early), and at 3 days (relatively late) after reperfusion. At 24 hr after exercise, apoptotic cell death was determined. At 3 and 24 hr after exercise, the expression of pro- and antiapoptotic proteins was evaluated through Western blotting. As expected, ischemic stroke significantly increased the levels of apoptotic cell death. Compared with the stroke group without exercise, apoptotic cell death was further increased (P < 0.05) at 6 hr but not at 24 hr or 3 days with exercise. This exacerbated cell injury was associated with increased expression of proapoptotic proteins (BAX and caspase-3). The expression of Bcl-2, an antiapoptotic protein, was not affected by exercise. In ischemic stroke, apoptotic cell death was enhanced by very early exercise in association with increased expression of proapoptotic proteins. These results shed light on the time-sensitive effect of exercise in poststroke rehabilitation. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.23890 | DOI Listing |
Nat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167, Mannheim, Germany.
Stem Cells Transl Med
December 2024
Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Introduction: Alzheimer's disease (AD) shows significant sex differences in prevalence and clinical manifestations, but the underlying molecular mechanisms remain unclear.
Methods: This study used a large-scale, single-cell transcriptomic atlas of the human prefrontal cortex to investigate sex-dependent molecular changes in AD. Our approach combined cell type-specific and sex-specific differential gene expression analysis, pathway enrichment, gene regulatory network construction, and cell-cell communication analysis to identify sex-dependent changes.
Pharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!