The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO/SrTiO to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat4726DOI Listing

Publication Analysis

Top Keywords

spin hall
12
spin-to-charge conversion
8
charge current
8
spin-orbit coupling
8
spin current
8
spin
7
highly efficient
4
efficient tunable
4
tunable spin-to-charge
4
conversion rashba
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!