Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003378 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160834 | PLOS |
Surgery
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Hepatobiliary & General Surgery, IRCCS Humanitas Research Hospital, Milan, Italy. Electronic address:
Background: Communicating vessels among hepatic veins in patients with tumors invading/compressing hepatic veins at their caval confluence facilitate new surgical solutions. Although their recognition by intraoperative ultrasound has been described, the possibility of preoperative detection still remains uncertain. We aimed to develop a model to predict their presence before surgery.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
Biomed Phys Eng Express
January 2025
Chiba University Center for Frontier Medical Engineering, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, JAPAN.
Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.
View Article and Find Full Text PDFJ Neurosurg
January 2025
Departments of1Biomedical Engineering.
Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!