Aims: To investigate the effects of electrical stimulation of sacral dorsal/ventral roots on irritation-induced bladder overactivity, reveal possible different mechanisms under nociceptive bladder conditions, and establish a large animal model of sacral neuromodulation.

Methods: Intravesical infusion of 0.5% acetic acid (AA) was used to irritate the bladder and induce bladder overactivity in cats under α-chloralose anesthesia. Electrical stimulation (5, 15, or 30 Hz) was applied to individual S1-S3 dorsal or ventral roots at or below motor threshold intensity. Repeated cystometrograms (CMGs) were performed with/without the stimulation to determine the inhibition of bladder overactivity.

Results: AA irritation induced bladder overactivity and significantly (P < 0.05) reduced the bladder capacity to 62.6 ± 11.7% of control capacity measured during saline CMGs. At threshold intensity for inducing reflex twitching of the anal sphincter or toe, S1/S2 dorsal root stimulation at 5 Hz but not at 15 or 30 Hz inhibited bladder overactivity and significantly (P < 0.05) increased bladder capacity to 187.3 ± 41.6% and 155.5 ± 9.7% respectively, of AA control capacity. Stimulation of S3 dorsal root or S1-S3 ventral roots was not effective. Repeated stimulation of S1-S3 dorsal root did not induced a post-stimulation inhibition.

Conclusions: This study established a cat model of sacral neuromodualation of nociceptive bladder overactivity. The results revealed that the mechanisms underlying sacral neuromodulation are different for nociceptive and non-nociceptive bladder activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521272PMC
http://dx.doi.org/10.1002/nau.23105DOI Listing

Publication Analysis

Top Keywords

bladder overactivity
16
nociceptive bladder
8
overactivity cats
8
electrical stimulation
8
bladder
7
sacral neuromodulation
4
neuromodulation nociceptive
4
overactivity
4
cats aims
4
aims investigate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!