Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K627-725) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K627-725 contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII-αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K627-725 structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K627-725. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K627-725 inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266509 | PMC |
http://dx.doi.org/10.1021/acs.biochem.6b00711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!