Context: Cooling the torso and neck can improve exercise performance and capacity in a hot environment; however, the proposed mechanisms for the improvements often differ.
Objective: To directly compare the effects of cooling the neck and torso region using commercially available devices on exercise capacity in a hot environment (temperature = 35°C ± 0.1°C, relative humidity = 50.1% ± 0.7%).
Design: Crossover study.
Setting: Laboratory.
Patients Or Other Participants: Eight recreationally active, nonheat-acclimated men (age = 24 ± 4 years, height = 1.82 ± 0.10 m, mass = 80.3 ± 9.7 kg, maximal power output = 240 ± 25 W).
Intervention(s): Three cycling capacity tests at 60% maximal power output to volitional exhaustion: 1 with no cooling (NC), 1 with vest cooling (VC), and 1 with a neck cooling collar (CC).
Main Outcome Measure(s): Time to volitional exhaustion, rectal temperature, mean skin temperature, torso and neck skin temperature, body mass, heart rate, rating of perceived exertion, thermal sensation, and feeling scale were measured.
Results: Participants cycled longer with VC (32.2 ± 9.5 minutes) than NC (27. 6 ± 7.6 minutes; P = .03; d = 0.54) or CC (30.0 ± 8.8 minutes; P = .02; d = 0.24). We observed no difference between NC and CC (P = .12; d = 0.31). Neck and torso temperature and perceived thermal sensation were reduced with the use of cooling modalities (P < .001), but no other variables were affected.
Conclusions: Cycling capacity in the heat improved when participants used a commercially available cooling vest, but we observed no benefit from wearing a commercially available CC. The vest and the collar did not alter the heart rate, rectal temperature, skin temperature, or sweat-loss responses to the cycling bout.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317188 | PMC |
http://dx.doi.org/10.4085/1062-6050-51.8.07 | DOI Listing |
Impact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur. This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: Hypoglossal nerve stimulation (HGNS) is a promising surgical option for patients with obstructive sleep apnea (OSA) who are intolerant of continuous positive airway pressure therapy (CPAP). Efficacy studies for HGNS stimulation largely focus on the apnea-hypopnea index and/or oxygen desaturation index. This study's objective was to show the physiological effects of HGNS stimulation on upper airway patency, airflow, and treatment effect during polysomnography (PSG) testing.
View Article and Find Full Text PDFTheranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFACS ES T Eng
January 2025
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States.
Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .
View Article and Find Full Text PDFRSC Adv
January 2025
School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
During the initial cycling of lithium-ion batteries, the generation of SEI at the electrode-electrolyte interface and the occurrence of irreversible side reactions consume the active lithium, resulting in irreversible loss of volume (ICL), which may also be accompanied by electrode volume changes and structural collapse. Addressing these challenges has become critical, and pre-lithiation with additional lithium has emerged as a key way to improve battery performance. Hence, this review comprehensively analyzes and summarizes the causes of ICL in lithium-ion batteries, and systematically discusses various prelithiation methods and mechanisms of different electrode structures, especially electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!