The Nicholas reaction has been applied to the installation of alkyne ligation handles. Acid-promoted propargylation of hydroxyl, sulfhydryl, amino, and carboxyl groups using dicobalt hexacarbonyl-stabilized propargylium ions is reported. This method is useful for introduction of propargyl groups into base-sensitive molecules, thereby expanding the toolbox of methods for the incorporation of alkynes for bio-orthogonal reactions. High-value molecules are used as the limiting reagent, and various propargylium ion precursors are compared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234733PMC
http://dx.doi.org/10.1021/acs.orglett.6b02088DOI Listing

Publication Analysis

Top Keywords

alkyne ligation
8
ligation handles
8
propargylation hydroxyl
8
hydroxyl sulfhydryl
8
sulfhydryl amino
8
amino carboxyl
8
carboxyl groups
8
nicholas reaction
8
handles propargylation
4
groups nicholas
4

Similar Publications

A living library concept to capture the dynamics and reactivity of mixed-metal clusters for catalysis.

Nat Chem

January 2025

TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany.

The exploration of ligated metal clusters' chemical space is challenging, partly owing to an insufficiently targeted access to reactive clusters. Now, dynamic mixtures of clusters, defined as living libraries, are obtained through organometallic precursor chemistry. The libraries are populated with interrelated clusters, including transient and highly reactive ones, as well as more accessible but less reactive species.

View Article and Find Full Text PDF

Small-molecule fluorophores are invaluable tools for fluorescence imaging. However, means for their covalent conjugation to the target proteins limit applications in multicolor imaging. Here, we identify 2-[(alkylhio)(ryl)ethylene]alononitrile (TAMM) molecules reacting with 1,2-aminothiol at a labeling rate over 10 M s through detailed mechanistic investigation.

View Article and Find Full Text PDF

The enantioselective [3+2] annulation of readily accessible aldimines with alkynes via C-H activation is, in principle, a straightforward and atom-efficient route for synthesizing chiral 1-aminoindenes, which are important components in a wide array of natural products, bioactive molecules, and functional materials. However, such asymmetric transformation has remained undeveloped to date due to the lack of suitable chiral catalysts. Here, we report for the first time the enantioselective [3+2] annulation of aldimines with alkynes via C-H activation using chiral half-sandwich scandium catalysts.

View Article and Find Full Text PDF

Highly sensitive and accurate detection of disease biomarkers is of great importance for diagnosis, staging, and treatment of certain diseases. Herein, we report a novel electrochemical method for the quantification of miRNA biomarkers with DNA tetrahedrons as the signal reporters. Upon the initiation of DNA hairpin opening by miRNA at the electrode interface, the hidden click reaction group is exposed for the bioconjugation with a tetrahedral DNA nanostructure, which carries multiple electrochemical species.

View Article and Find Full Text PDF

Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!