Background: Long-term studies of posterior cruciate ligament (PCL) reconstruction suggest that normal stability is not restored in the majority of patients. The Achilles tendon allograft is frequently utilized, although recently, the quadriceps tendon has been introduced as an alternative option due to its size and high patellar bone density.

Purpose/hypothesis: The purpose of this study was to compare the biomechanical strength of PCL reconstructions using a quadriceps versus an Achilles allograft. The hypothesis was that quadriceps bone block allograft has comparable mechanical properties to those of Achilles bone block allograft.

Study Design: Controlled laboratory study.

Methods: Twenty-nine fresh-frozen cadaveric knees were assigned to 1 of 3 groups: (1) intact PCL, (2) PCL reconstruction with Achilles tendon allograft, or (3) PCL reconstruction with quadriceps tendon allograft. After reconstruction, all supporting capsular and ligamentous tissues were removed. Posterior tibial translation was measured at neutral and 20° external rotation. Each specimen underwent a preload, 2 cyclic loading protocols of 500 cycles, then load to failure.

Results: Construct creep deformation was significantly lower in the intact group compared with both Achilles and quadriceps allograft (P = .008). The intact specimens reached the greatest ultimate load compared with both reconstructions (1974 ± 752 N, P = .0001). The difference in ultimate load for quadriceps versus Achilles allograft was significant (P = .048), with the quadriceps group having greater maximum force during failure testing. No significant differences were noted between quadriceps versus Achilles allograft for differences in crosshead excursion during cyclic testing (peak-valley [P-V] extension stretch), creep deformation, or stiffness. Construct stiffness measured during the failure test was greatest in the intact group (117 ± 9 N/mm, P = .0001) compared with the Achilles (43 ± 11 N/mm) and quadriceps (43 ± 7 N/mm) groups.

Conclusion: While the quadriceps trended to be a stronger construct with a greater maximum load and stiffness required during load to failure, only maximum force in comparison with the Achilles reached statistical significance. Quadriceps and Achilles tendon allografts had similar other biomechanical characteristics when used for a PCL reconstruction, but both were inferior to the native PCL.

Clinical Relevance: The quadriceps tendon is a viable graft option in PCL reconstruction as it exhibits a greater maximum force and is otherwise comparable to the Achilles allograft. These findings expand allograft availability in PCL reconstruction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984316PMC
http://dx.doi.org/10.1177/2325967116660068DOI Listing

Publication Analysis

Top Keywords

pcl reconstruction
24
quadriceps versus
16
versus achilles
16
achilles tendon
16
achilles allograft
16
quadriceps
13
achilles
12
bone block
12
tendon allograft
12
quadriceps tendon
12

Similar Publications

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Toward improved auricle reconstruction: The role of FDM 3D printing with PCL and TPU materials.

Biomater Adv

January 2025

Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milan, Italy; Local Unit Politecnico di Milano, Milan, Italy. Electronic address:

Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient.

View Article and Find Full Text PDF

Introduction: Acute anterior cruciate ligament (ACL) injuries can be disabling because of prolonged rehabilitation process following surgical reconstructions. Rates of ACL injuries among military service members are close to 10 times greater than the general civilian population, likely because of the operation tempo and the unique physical requirements. Studies debated functional testing requirements for return to sports, but no study investigated the impact of functional training and re-injury rates following ACL reconstruction and their association with functional testing outcomes and time to return to full duty in United States Naval Academy (USNA) Midshipmen.

View Article and Find Full Text PDF

Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

Medicina (Kaunas)

December 2024

Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!