A multi-organ-on-a-chip (MOC), also known as a human-on-a-chip, aims to simulate whole body response to drugs by connecting microscale cell cultures of multiple tissue types via fluidic channels and reproducing the interaction between them. While several studies have demonstrated the usefulness of MOC at a proof-of-concept level, improvements are needed to enable wider acceptance of such systems; ease of use for general biological researchers, and a mathematical framework to design and interpret the MOC systems. Here, we introduce a pumpless, user-friendly MOC which can be easily assembled and operated, and demonstrate the use of a PK-PD model for interpreting drug's action inside the MOC. The metabolism-dependent anticancer activity of a flavonoid, luteolin, was evaluated in a two-compartment MOC containing the liver (HepG2) and the tumor (HeLa) cells, and the observed anticancer activity was significantly weaker than that anticipated from a well plate study. Simulation of a PK-PD model revealed that simultaneous metabolism and tumor-killing actions likely resulted in a decreased anti-cancer effect. Our work demonstrates that the combined platform of mathematical PK-PD model and an experimental MOC can be a useful tool for gaining an insight into the mechanism of action of drugs with interactions between multiple organs. Biotechnol. Bioeng. 2017;114: 432-443. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26087 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.
: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Pharmacy, Shimane University Hospital, 89-1 Enya, Izumo 693-8501, Shimane, Japan.
Antimicrobial resistance (AMR) poses a critical global health threat, necessitating the optimal use of existing antibiotics. Pharmacokinetic/pharmacodynamic (PK/PD) principles provide a scientific framework for optimizing antimicrobial therapy, particularly to respond to evolving resistance patterns. This review examines PK/PD strategies for antimicrobial dosing optimization, focusing on three key aspects.
View Article and Find Full Text PDFBackground: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.
Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!