Huntington's disease is one of several neurodegenerative disorders characterized by the aggregation of polyglutamine (polyQ)-expanded mutant protein. How polyQ aggregation leads to cellular dysfunction is not well understood. Here, we analyzed aberrant protein interactions of soluble oligomers and insoluble inclusions of mutant huntingtin using in-cell single molecule fluorescence spectroscopy and quantitative proteomics. We find that the interactome of soluble oligomers is highly complex, with an enrichment of RNA-binding proteins as well as proteins functioning in ribosome biogenesis, translation, transcription, and vesicle transport. The oligomers frequently target proteins containing extended low-complexity sequences, potentially interfering with key cellular pathways. In contrast, the insoluble inclusions are less interactive and associate strongly with protein quality control components, such as Hsp40 chaperones and factors of the ubiquitin-proteasome system. Our results suggest a "multiple hit" model for the pathogenic effects of mutant huntingtin, with soluble forms engaging more extensively in detrimental interactions than insoluble aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2016.07.022 | DOI Listing |
J Phys Chem B
January 2025
Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers.
View Article and Find Full Text PDFHuman amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
CenExel iResearch, Atlanta, GA, USA.
Background: Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque.
Objectives: To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD).
Ageing Res Rev
January 2025
Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel. Electronic address:
Cyclodextrins are widely used pharmaceutical excipients known to increase the solubility of drug compounds through formation of inclusion complexes. A prominent limitation of common cyclodextrins is their own scarce solubility in water, which renders them unsuitable for many drug formulations. Cyclodextrin solubility can be enhanced in appropriate media such as Deep Eutectic Solvents (DESs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!