Methods are described for measuring accurate absolute experimental inelastic mean free paths and differential cross-sections using DualEELS. The methods remove the effects of surface layers and give the results for the bulk materials. The materials used are VC, TiC, VN and TiN but the method should be applicable to a wide range of materials. The data was taken at 200keV using a probe half angle of 29mrad and a collection angle of 36mrad. The background can be subtracted from under the ionisation edges, which can then be separated from each other. This is achieved by scaling Hartree-Slater calculated cross-sections to the edges in the atomic regions well above the threshold. The average scaling factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with uncertainties of a few percent). If preliminary measurements of the chromatic effects in the post-specimen lenses are correct, both drop to 0.99. The inelastic mean free path for TiC was measured as 103.6±0.5nm compared to the prediction of 126.9nm based on the widely used Iakoubovskii parameterisation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2016.08.012 | DOI Listing |
Polymers (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS).
View Article and Find Full Text PDFNano Lett
January 2025
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.
Lead halide perovskites are renowned for their exceptional optoelectronic properties but face concerns over lead toxicity and stability, which drives the exploration of lead-free perovskites, with CsAgBiBr standing out as a benchmark alternative. Understanding the structural dynamics and thermal transport properties of CsAgBiBr is crucial but remains an outstanding challenge due to the complex atomic fluctuations. Here, through diffuse scattering experiments and simulations, we uncover the underlying dynamic local structure in CsAgBiBr, showing a unique two-dimensional spatial correlation.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.
This study reveals the mechanisms behind the ultralow lattice thermal conductivity κ in β-ZnSb single crystals through inelastic neutron scattering (INS). Analyzing phonon behaviors and the interaction between acoustic phonons and rattling modes, the first experimental evidence of avoided crossing in β-ZnSb is provided. The rattler-phonon avoided crossings contribute to the low κ in a β-ZnSb single crystal, enhancing the thermoelectric figure-of-merit (zT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!