Purpose: Investigation of the feasibility of the R mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio.
Theory And Methods: The improvement of the performance of state of the art magnetic resonance imaging (MRI) relaxometry algorithms is challenging because of a non-negligible bias and still unresolved numerical instabilities. Here, R mapping reconstructions, including complex fitting with multi-spectral fat-correction by using single-decay and double-decay formulation, are deeply studied in order to investigate and identify optimal configuration parameters and minimize the occurrence of numerical artifacts. The effects of echo number, echo spacing, and fat/water relaxation model type are evaluated through both simulated and in-vivo data. We also explore the stability and feasibility of the fat/water relaxation model by analyzing the impact of high percentage of fat infiltrations and local transverse relaxation differences among biological species.
Results: The main limits of the MRI relaxometry are the presence of bias and the occurrence of artifacts, which significantly affect its accuracy. Chemical-shift complex R-correct single-decay reconstructions exhibit a large bias in presence of a significant difference in the relaxation rates of fat and water and with fat concentration larger than 30%. We find that for fat-dominated tissues or in patients affected by extensive iron deposition, MRI reconstructions accounting for multi-exponential relaxation time provide accurate R measurements and are less prone to numerical artifacts.
Conclusions: Complex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2016.08.006 | DOI Listing |
Neuroradiology
December 2024
Division of Neuroimaging and Interventional Neuroradiology, Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Background And Purpose: Synthetic MRI utilizes the quantitative relaxometry parameters to generate multiple contrast images through a single acquisition. We tried to explore the utility of synthetic MRI derived relaxometry parameters in evaluation of ring enhancing lesions of brain.
Materials And Methods: This was a prospective study.
Invest Radiol
October 2024
From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).
The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.
View Article and Find Full Text PDFEur J Radiol
December 2024
Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Austria.
Objectives: To explore texture analysis' ability on T and T relaxation maps to classify liver fibrosis into no-to-mild liver fibrosis (nmF) versus severe fibrosis (sF) group using machine learning algorithms and histology as reference standard.
Materials And Methods: In this single-center study, patients undergoing 3 T MRI who also had histology examination were retrospectively enrolled. SNAPSHOT-FLASH sequence for T1 mapping, radial turbo-spin-echo sequence for T2 mapping and spin-echo echo-planar-imaging magnetic resonance elastography (MRE) sequences were analyzed.
Phys Imaging Radiat Oncol
October 2024
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Purpose: Multiparametric magnetic resonance imaging (MRI) is known to provide predictors for malignancy and treatment outcome. The inclusion of these datasets in workflows for online adaptive planning remains under investigation. We demonstrate the feasibility of longitudinal relaxometry in online MR-guided adaptive stereotactic body radiotherapy (SBRT) to the prostate and dominant intra-prostatic lesion (DIL).
View Article and Find Full Text PDFGlobal Spine J
December 2024
Department of Spine Surgery, Ganga Hospital, Coimbatore, India.
Study Design: Observational comparative study.
Objective: To study the role of magnetic resonance spectroscopy (MRS) and T2 relaxometry (T2r) as imaging biomarkers for identifying early lumbar disc degeneration.
Methods: We evaluated 236 discs in normal volunteers and 215 discs in low back pain (LBP) patients by MRS and T2r to document the molecular spectra of various metabolites as well as disc hydration and collagen content, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!