Mandibular first molars in mice ranging in age from 18 days prenatal to 5 days postnatal were used for light and electron microscopic examinations of the enamel-free area (EFA) during development of the occlusal cusp (mesiobuccal cusp). Notable morphological changes in the inner enamel epithelium and the cells of the stratum intermedium were observed. At prenatal age of 18 days, the inner enamel epithelium of the EFA (EFA epithelium) was composed of a layer of columnar cells and covered by the cells of the stratum intermedium. Two days after birth, the EFA epithelium was made up largely of preameloblasts, with mitochondria located in the proximal side of the cells toward the stratum intermedium. The cells of the stratum intermedium were irregularly shaped, with wide intercellular spaces between them. At a postnatal age of 3 days, most of the EFA epithelial cells resembled maturation-stage ameloblasts, being short and columnar in shape and having nuclei located in their proximal side. Distal cell membranes were folded, and mitochondria were scattered throughout the cytoplasm. In 4-day-old mice, the EFA epithelium was found to be formed of short columnar or cuboidal cells with distinct intercellular spaces. The cells of the stratum intermedium could no longer be detected, and cells of the EFA epithelium could not be distinguished from those of the stellate reticulum. Odontoblasts of the EFA were arranged and polarized parallel to the basal lamina, and odontoblastic processes extended toward the cusp tip. The orientation of thin and thick collagen fibers within predentin and dentin was also parallel to the basal lamina. Even after dentin mineralization, disrupted basal lamina and long, aperiodic, fine fibrils were found between the epithelium and the dentin. Following the disappearance of the basal lamina and fine fibrils, stippled material and crystals appeared on the dentin surface. The mineralized matrix, which x-ray microanalytical energy peaks identified as containing calcium and phosphorus, was continuous with enamel in the distal slope of the cusp at the cusp tip. Thus, the inner enamel epithelium of the EFA differentiated into secretory cells capable of enamel-like matrix formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/aja.1001840404 | DOI Listing |
Microorganisms
December 2024
Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel.
Facultatively anaerobic spp. and anaerobic spp. are among the most prominent bacteria on human skin.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt.
This study aimed to describe the morphological features and microstructure of the upper, lower, and third eyelids of the black-winged kite, Elanus caeruleus, and to characterize the organized lymphoid follicles and lymphocytes in the eyelid mucosa. Additionally, it aimed to illustrate the importance of the eye adnexa in the eye's immune protection. The upper, lower, and third eyelids display varying morphological differences that seem to be closely linked to the birds' way of life, indicating adjustments to their environment and eating behaviors.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.
Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!