A large animal model that recapitulates the spectrum of human intervertebral disc degeneration.

Osteoarthritis Cartilage

Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States. Electronic address:

Published: January 2017

Objective: The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics.

Design: Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, microcomputed tomography (μCT), and measurement of disc biomechanical properties.

Results: Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC-injected discs also occurred. Spine segment range of motion (ROM) was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact.

Conclusions: A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5182186PMC
http://dx.doi.org/10.1016/j.joca.2016.08.006DOI Listing

Publication Analysis

Top Keywords

disc degeneration
20
large animal
12
animal model
12
recapitulates spectrum
12
model recapitulates
8
disc
8
intervertebral disc
8
disc height
8
degenerative changes
8
chabc nucleotomy
8

Similar Publications

An 18-year-old female patient presented with a 1-month history of low back pain, which had worsened and was accompanied by radiating pain in the right lower limb for half a month. She was admitted to our hospital with computed tomography and magnetic resonance imaging findings suggesting calcification of the L3/4 disc and a large intraspinal mass at the L2-4 level. The patient's symptoms did not improve with conservative treatment, and her muscle strength rapidly declined.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood.

View Article and Find Full Text PDF

Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.

View Article and Find Full Text PDF

Intervertebral disc regeneration - Is it possible?

Acta Orthop Traumatol Turc

December 2024

Department of Orthopedics and Traumatology, Brugmann University Hospital Center, Free University of Brussels, Brussels, Belgium.

Objective: The aim of this study was to evaluate disc metabolism after decreasing the axial load through surgery by assessing the glycosaminoglycan content through a non-invasive method-delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC).

Methods: Sixteen patients with mono-segmental disc degeneration (L4-L5 or L5-S1) who underwent posterior lumbar spine fixation with intervertebral distraction of 2 consecutive vertebrae using monoaxial transpedicular screws and lyophilized allograft to achieve segmental fusion, and who had a follow-up period of at least 2 years, were included in this study. The first lumbar disc was used as the control group.

View Article and Find Full Text PDF

Assessment of retinal pigment epithelium tears in eyes with submacular hemorrhage secondary to age-related macular degeneration.

Sci Rep

January 2025

Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.

To assess retinal pigment epithelium (RPE) tears in eyes which underwent pars plana vitrectomy (PPV) for submacular hemorrhage (SMH) secondary to age-related macular degeneration and to investigate the prognostic factors of visual outcomes. This study was a retrospective, observational case series that included 24 eyes of 24 patients who underwent PPV with subretinal tissue plasminogen activator and air for SMH. RPE tears were investigated using spectral-domain or swept-source optical coherence tomography images with raster scan, combined confocal scanning laser ophthalmoscope near-infrared images and color fundus photographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!