Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide decomposition - Raman imaging study.

Chemosphere

Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland. Electronic address:

Published: December 2016

Various species of yeasts are gaining attention as producers of nutraceuticals and biofuels and due to their capacity to biodegrade chemical waste. Rhodotorula mucilaginosa is one of the most oleaginous species of yeast, an efficient de novo carotenoid producer and was reported to be capable of decomposing of organic pesticides. In this work we studied the influence of a toxic pesticide, diazinone, on production of storage (lipids) and protective (carotenoids, hemoproteins) compounds by Rh. mucilaginosa alive cells with the help of Raman imaging. It occurred that the yeast in non-oleaginous phase and aerobic environment was rich in carotenoids and their level increased significantly under incubation with diazinone, while anaerobic environment resulted in production of both carotenoids and hemoproteins and the level of the latter decreased under the influence of the pesticide. For yeasts in oleaginous phase, it was concluded that lipid production (via triggering of NAD accumulation and increase of the NO level) resulted in nitrosative stress leading to flavohemoprotein synthesis and was associated with the increase of the mitochondrial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.08.069DOI Listing

Publication Analysis

Top Keywords

rhodotorula mucilaginosa
8
raman imaging
8
carotenoids hemoproteins
8
lipids hemoproteins
4
carotenoids
4
hemoproteins carotenoids
4
carotenoids alive
4
alive rhodotorula
4
mucilaginosa cells
4
cells pesticide
4

Similar Publications

Exploring the impact of sodium acetate on lipid and carotenoid production in .

Prep Biochem Biotechnol

January 2025

Environmental Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.

The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.

View Article and Find Full Text PDF

Extracellular hydrolytic activity (phospholipase, protease and hemolysin production) was evaluated in 178 strains of potentially pathogenic ascomycetous (Candida parapsilosis, Candida tropicalis) and basidiomycetous (Rhodotorula mucilaginosa) yeasts isolated from the excreta of Mew Gulls. Two bird colonies, one nesting in a natural habitat and the other in an urban habitat at the landfill, were studied simultaneously during their 7-month breeding season. Significant differences in phospholipase and protease production were found between natural and anthropophized strains.

View Article and Find Full Text PDF

Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn.

View Article and Find Full Text PDF

Background And Purpose: Plants are crucial habitats for fungus communities as they provide an appropriate physical environment for the growth and reproduction of the yeast microbiome. Varieties of pathogenic and non-pathogenic yeast could be found in trees. Although species are the most common pathogenic yeasts associated with trees, other yeasts also grow on trees and are critical to human health.

View Article and Find Full Text PDF

The immobilization of microorganisms in polymeric hydrogel has gained attention as a potential method for applications in various fields, offering several advantages over traditional cell free-living technologies. The present study aims to compare the efficiency of selenium (Se) bioremediation and biorecovery by two different fungal types, both in their free and immobilized forms using alginate hydrogels. Our results demonstrated an improvement in the amount of Se(IV) removed from the hydrogels of Aspergillus ochraceus (∼97%) and Rhodotorula mucilaginosa (∼43%) compared to that of the planktonic cultures (∼57% and ∼9-17%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!