The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats.

Physiol Behav

Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany; Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.

Published: October 2016

Both the acetylcholine esterase (AChE) and the histamine H3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist 7-(3-(piperidin-1-yl)propoxy)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (UW-MD-72) shows excellent selectivity profiles over the AChE's isoenzyme butyrylcholinesterase (BChE) as well as high and balanced in-vitro affinities at both AChE and hH3R with IC50 of 5.4μM on hAChE and hH3R antagonism with Ki of 2.54μM, respectively. In the current study, the effects of UW-MD-72 (1.25, 2.5, and 5mg/kg, i.p.) on memory deficits induced by the muscarinic cholinergic antagonist scopolamine (SCO) and the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were investigated in a step-through type passive avoidance paradigm in adult male rats applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. The results observed show that SCO (2mg/kg, i.p.) and DIZ (0.1mg/kg, i.p.) significantly impaired learning and memory in rats. However, acute systemic administration of UW-MD-72 significantly ameliorated the SCO- and DIZ-induced amnesic effects. Furthermore, the ameliorating activity of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10mg/kg, i.p.). Moreover, ameliorative effect of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was strongly reversed when rats were pretreated with a combination of ZOL (10mg/kg, i.p.) and SCO (1.0mg/kg, i.p.), indicating that these memory enhancing effects were, in addition to other neural circuits, observed through histaminergic H2R as well as muscarinic cholinergic neurotransmission. These results demonstrate the ameliorative effects of UW-MD-72 in two in-vivo memory models and provide evidence for the potential of dual-acting AChEI and H3R antagonists to treat cognitive disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2016.08.022DOI Listing

Publication Analysis

Top Keywords

passive avoidance
8
avoidance paradigm
8
h3r antagonists
8
treat cognitive
8
cognitive disorders
8
dual-acting achei
8
achei h3r
8
effects uw-md-72
8
muscarinic cholinergic
8
uw-md-72 125mg/kg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!