AI Article Synopsis

  • The 2-methylthio modification at A37 in tRNAs is essential for precise decoding and maintaining metabolic balance in mammals, yet how this modification is regulated is not well understood.
  • New research reveals that cysteine hydropersulfide (CysSSH), a recently discovered reactive sulfur compound, plays a key role in facilitating this modification in cells.
  • Disruption of CysSSH production leads to a decrease in ms modification, which negatively affects insulin secretion and glucose metabolism, highlighting its importance in cellular processes.

Article Abstract

The 2-methylthio (ms) modification at A37 of tRNAs is critical for accurate decoding, and contributes to metabolic homeostasis in mammals. However, the regulatory mechanism of ms modification remains largely unknown. Here, we report that cysteine hydropersulfide (CysSSH), a newly identified reactive sulfur species, is involved in ms modification in cells. The suppression of intracellular CysSSH production rapidly reduced ms modification, which was rescued by the application of an exogenous CysSSH donor. Using a unique and stable isotope-labeled CysSSH donor, we show that CysSSH was capable of specifically transferring its reactive sulfur atom to the cysteine residues of ms-modifying enzymes as well as ms modification. Furthermore, the suppression of CysSSH production impaired insulin secretion and caused glucose intolerance in both a pancreatic β-cell line and mouse model. These results demonstrate that intracellular CysSSH is a novel sulfur source for ms modification, and that it contributes to insulin secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224495PMC
http://dx.doi.org/10.1093/nar/gkw745DOI Listing

Publication Analysis

Top Keywords

reactive sulfur
12
insulin secretion
12
sulfur species
8
intracellular cysssh
8
cysssh production
8
cysssh donor
8
cysssh
7
modification
6
species regulate
4
regulate trna
4

Similar Publications

Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China.

The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.

View Article and Find Full Text PDF

Chalcogenide exchange reactions are an important class of bimolecular nucleophilic substitution reactions (SN2) involving sulfur and selenium species as nucleophile, central atom, and/or leaving group, which are fundamental throughout redox biology and metabolism. While thiol-disulfide exchange reactions have been deeply investigated, those involving selenium are less understood, especially with regards to the polarised selenenyl sulfides RSe-SR' even though the directed reactivity of selenenyl sulfides is biologically crucial for selenoenzymes such as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Synthetic methods to create asymmetric selenenyl sulfides with high regiochemical purity only emerged over the last five years; this functional group has already demonstrated powerful applications to cell biology, through probes for molecular imaging (e.

View Article and Find Full Text PDF

Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.

View Article and Find Full Text PDF

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!