Unlabelled: The modification of soft hydrogels with hard inorganic components is a method used to form composite materials with application in non-load-bearing bone tissue engineering. The inclusion of an inorganic component may provide mechanical enhancement, introduce osteoconductive or osteoinductive properties, or change other aspects of interactions between native or implanted cells and the material. A thorough understanding of the interactions between such components is needed to improve the rational design of such biomaterials. To achieve this goal, model systems which could allow study of the formation and transformation of mineral phases within a hydrogel network with a range of experimental methods and high spatial and time resolution are needed. Here, we report a detailed investigation of the formation and transformation process of calcium phosphate mineral within an alginate hydrogel matrix. A combination of optical microscopy, confocal Raman microspectroscopy and electron microscopy was used to investigate the spatial distribution, morphology and crystal phase of the calcium phosphate mineral, as well as to study transformation of the mineral phases during the hydrogel mineralization process and upon incubation in a simulated body fluid. It was found, that under the conditions used in this work, mineral initially formed as a metastable amorphous calcium phosphate phase (ACP). The ACP particles had a distinctive spherical morphology and transformed within minutes into brushite in the presence of brushite seed crystals or into octacalcium phosphate, when no seeds were present in the hydrogel matrix. Incubation of brushite-alginate composites in simulated body fluid resulted in formation of hydroxyapatite. The characterization strategy presented here allows for non-destructive, in situ observation of mineralization processes in optically transparent hydrogels with little to no sample preparation.

Statement Of Significance: The precipitation and transformations of calcium phosphates (CaP) is a complex process, where both formation kinetics and the stability of different mineral phases control the outcome. This situation is even more complex if CaP is precipitated in a hydrogel matrix, where one can expect the organic matrix to modulate crystallization by introducing supersaturation gradients or changing the nucleation and growth kinetics of crystals. In this study we apply a range of characterization techniques to study the mineral formation and transformations of CaP within an alginate matrix with spatiotemporal resolution. It demonstrates how a detailed investigation of the mineral precipitation and transformations can aid in the future rational design of hydrogel-based materials for bone tissue engineering and studies of biomineralization processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2016.08.041DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
16
hydrogel matrix
16
formation transformation
12
mineral phases
12
alginate hydrogel
8
bone tissue
8
tissue engineering
8
rational design
8
mineral
8
transformation mineral
8

Similar Publications

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

The bone is a highly dynamic organ that undergoes continuous remodeling through an intricate balance of bone formation and degradation. Hyperactivation of the bone-degrading cells, the osteoclasts (OCs), occurs in disease conditions and hormonal changes in females, resulting in osteoporosis, a disease characterized by altered microarchitecture of the bone tissue, and increased bone fragility. Thus, building robust assays to quantify OC resorptive activity to examine the molecular mechanisms underlying bone degradation is critical.

View Article and Find Full Text PDF

Introduction: Tumoral calcinosis is a rare hereditary condition characterized by the deposition of calcium phosphate and hydroxyapatite in periarticular soft tissues. First described by Giard and Duret in 1898 and later detailed by Inclan in 1943, this condition has often been confused with other forms of periarticular calcification. Tumoral calcinosis predominantly affects young males and is typically found around major joints, such as the shoulder, elbow, hip, ankle, and wrist.

View Article and Find Full Text PDF

: High-volume online hemodiafiltration (OL-HDF) has proven to be the most efficient dialysis modality and to offer better clinical outcomes in patients on hemodialysis. Longer and more frequent dialysis sessions have demonstrated clinical and survival benefits. : A single-center observational study of the first one hundred patients on nocturnal every-other-day OL-HDF was conducted with the aim of reporting the experience with this treatment schedule and evaluating analytical and clinical outcomes as well as the patient and technique survival.

View Article and Find Full Text PDF

Invited Review: The impact of the dairy food matrix on digestion and absorption.

J Dairy Sci

January 2025

Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand. Electronic address:

The nutritional value of any food product has historically been measured by the calorific value of individual components, harking back to the days of the development of the bomb calorimeter. A fuller understanding of nutrition later took into account the need for specific components, such as proteins, carbohydrates, vitamins and minerals, that ere known to be required for good human health and growth. In milk and milk products, these include casein and whey proteins, lactose, milk fat triacylglycerides, minor lipid components (both charged and neutral), calcium, and micronutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!