Functional protein homeostasis is essential for the maintenance of normal cellular physiology, cell growth, and cell survival. Proteasome inhibition in cancer cells can disturb protein homeostasis in such a way that synthetic proteasome inhibitors like bortezomib may selectively kill myeloma cells. Solid cancer cells appear to respond less to bortezomib which may in part be due to a rescue mechanism of the unfolded protein response/endoplasmic reticulum stress mechanism which leads to a temporary shutdown of protein biosynthesis at the translational level. Here we show that proteasome inhibition by bortezomib may also interfere with general protein biosynthesis already at the stage of nucleolar ribosome biogenesis. Ultrastructural analysis revealed not only that bortezomib induces conspicuous changes in cytoplasmic morphology but also pronounced morphological changes of the nucleolar ultrastructure, associated with an accumulation of the transcription factor ATF4 at nucleolar sites. Stress-induced intra-nucleolar ATF4 accumulation was observed in cancer cells in a dose and time dependent manner and ultrastructural studies revealed that ATF4 is preferentially localized inside the dense fibrillar and granular component of nucleoli. Furthermore, bortezomib affected not only the number of nucleoli, but also the volume and distribution of nucleolar components. The localization of ATF4 in the granular component of nucleoli together with its association with nascent RNA transcripts in cells undergoing proteotoxic cell stress could suggest a new function for ATF4 in cell stress management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2016.08.002DOI Listing

Publication Analysis

Top Keywords

proteasome inhibition
12
cancer cells
12
transcription factor
8
factor atf4
8
protein homeostasis
8
protein biosynthesis
8
granular component
8
component nucleoli
8
cell stress
8
atf4
6

Similar Publications

Multiple myeloma is characterized by malignant cells which produce high amounts of monoclonal immunoglobulin. Myeloma cells are, therefore, dependent on effective protein degradation. Proteasomal protein degradation is targeted by proteasome inhibitors in routine care.

View Article and Find Full Text PDF

FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway.

J Adv Res

January 2025

Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:

Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.

Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.

View Article and Find Full Text PDF

Ailanthone induces triple-negative breast cancer cells death involving the inhibition of OTUB1-mediated ERRα deubiquitylation.

J Adv Res

January 2025

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:

Introduction: Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer, and effective therapeutic strategies are needed. Estrogen-related receptor alpha (ERRα) is considered a promising target for managing TNBC.

Objectives: Here, we aimed to screen natural products to find downregulator of ERRα and elucidate its mechanism of action.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!