By converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion. Although the initial waste material was described as rather stable, the lab-scale aeration tests indicated a significant improvement of the leachate quality and even the biological solid waste stability. However, the aeration success was less pronounced for the application at the landfill site, mainly due to technical limitations in the full-scale operation. In this paper main performance data of the field investigation are compared to four other scientifically documented case studies along with stability indicators for solid waste and leachate characteristics in order to evaluate the success of aeration as well as the progress of a landfill towards completion and end of post-closure care. A number of quantitative benchmarks and relevant context information for the performance assessment of the five hitherto conducted international aeration projects are proposed aiming to support the systematization and harmonization of available results from diverse field studies and full-scale applications in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2016.07.043 | DOI Listing |
Sci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFInd Eng Chem Res
December 2024
School of Packaging, Michigan State University, East Lansing, Michigan 48824-1223, United States.
Polyolefins (POs), which constitute over 50% of all plastics, predominantly end up in landfills. To date, there have been no reports on mixtures of PO vitrimers. This study reports the successful synthesis of PO vitrimers from a mixture of 27.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.
View Article and Find Full Text PDFWaste Manag
December 2024
Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China. Electronic address:
There are hazardous substances such as chloride salts and heavy metals in the municipal solid waste incineration fly ash (WIFA). During thermal treatment, the concentrated chlorides promote the volatilization of heavy metals, increasing the ecological risk. The water washing method is also employed as a pre-treatment for WIFA, but a substantial volume of wastewater with high chloride content is produced that poses challenges for effective treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!