Aging-Associated TNF Production Primes Inflammasome Activation and NLRP3-Related Metabolic Disturbances.

J Immunol

Institute of Molecular Medicine, University Hospital, University of Bonn, 53127 Bonn, Germany; Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany

Published: October 2016

Accumulating evidence suggests that the activation of the innate branch of the immune system plays a pivotal role in the induction and perpetuation of metabolic and aging-related diseases. In this context, the NLRP3 inflammasome pathway has been identified as an important driver of sterile inflammatory processes. De novo protein synthesis of NLRP3 induced by signals such as TLR ligands or TNF is a prerequisite for sustained NLRP3 mediated caspase-1 cleavage and inflammasome activation. Here, we demonstrate in aged mice that spontaneously elevated TNF represents a critical priming signal that functions to control NLRP3 inflammasome activation. Elevated systemic TNF levels were responsible for increased NLRP3 expression and caspase-1 activity in adipose tissues and liver. TNF dependent, spontaneous inflammasome activity in aged mice resulted in impaired glucose tolerance that could be attributed to peripheral insulin resistance. Altogether, these results implicate that TNF-driven NLRP3 expression constitutes an important checkpoint that regulates inflammasome activation, presumably by additional signals such as aging-associated DAMPs.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1501336DOI Listing

Publication Analysis

Top Keywords

inflammasome activation
16
nlrp3 inflammasome
8
aged mice
8
nlrp3 expression
8
inflammasome
6
nlrp3
6
activation
5
aging-associated tnf
4
tnf production
4
production primes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!