NK cells are the first line of defense against infected and transformed cells. Defective NK cell activity was shown to increase susceptibility for viral infections and reduce tumor immune-surveillance. With age, the incidence of infectious diseases and malignancy rises dramatically, suggesting that impaired NK cell function might contribute to disease in these individuals. We found an increased frequency of NK cells with high expression of the inhibitory killer cell lectin-like receptor G1 (KLRG1) in individuals >70 y. The role of KLRG1 in ageing is not known, and the mechanism of KLRG1-induced inhibition of NK cell function is not fully understood. We report that NK cells with high KLRG1 expression spontaneously activate the metabolic sensor AMP-activated protein kinase (AMPK) and that activation of AMPK negatively regulates NK cell function. Pre-existing AMPK activity is further amplified by ligation of KLRG1 in these cells, which leads to internalization of the receptor and allows interaction with AMPK. We show that KLRG1 activates AMPK by preventing its inhibitory dephosphorylation by protein phosphatase-2C rather than inducing de novo kinase activation. Finally, inhibition of KLRG1 or AMPK prevented KLRG1-induced activation of AMPK and reductions in NK cell cytotoxicity, cytokine secretion, proliferation, and telomerase expression. This novel signaling pathway links metabolic sensing, effector function, and cell differentiation with inhibitory receptor signaling that may be exploited to enhance NK cell activity during ageing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027915PMC
http://dx.doi.org/10.4049/jimmunol.1600590DOI Listing

Publication Analysis

Top Keywords

cell function
16
cell
9
killer cell
8
cell lectin-like
8
lectin-like receptor
8
protein kinase
8
cell activity
8
cells high
8
activation ampk
8
ampk
7

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!