Erythropoietin-producing hepatocellular carcinoma cell (EPH) receptors comprise the most abundant receptor tyrosine kinase family characterized to date in mammals including humans. These proteins are involved in axon guidance, tissue organization, vascular development and the intricate process of various diseases including cancer. These diverse functions of EPH receptors are attributed, in part, to their abilities for heterodimerization. While the interacting partners of kinase-deficient EPHB6 receptor have been characterized, the interaction of the kinase-dead EPHA10 with any other receptor has not been identified. By using co-immunoprecipitation, we demonstrated physical interaction between kinase-deficient EPHA10 with kinase-sufficient EPHA7 receptor. Immunocytochemical analyses have revealed that these two receptors co-localize on the cell surface, and soluble portions of the receptors exist as a complex in the cytoplasm as well as the nuclei. While EPHA7 and EPHA10 co-localize similarly on the membrane in MCF10A and MCF7 cells, they were differentially co-localized in MDA-MB-231 cells stably transfected with empty pcDNA vector (MDA-MB-231-PC) or an expression construct of EPHB6 (MDA-MB-231-B6). The full-length isoforms of these receptors were co-localized on the cell surface, and the soluble forms were present as a complex in the cytoplasm as well as the nucleus in MDA-MB-231-PC cells. MDA-MB-231-B6 cells, on the other hand, were distinguished by the absence of any signal in the nuclei. Our results represent the first demonstration of physical interaction between EPHA10 and EPHA7 and their cellular co-localization. Furthermore, these observations also suggest gene-regulatory functions of the complex of the soluble forms of these receptors in breast carcinoma cells of differential invasiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070625PMC

Publication Analysis

Top Keywords

epha7 epha10
8
breast carcinoma
8
carcinoma cell
8
mda-mb-231 cells
8
eph receptors
8
physical interaction
8
cell surface
8
surface soluble
8
complex cytoplasm
8
cytoplasm well
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!