Background: The literature describes the treatment of scaphoid fractures comparing the volar and dorsal approaches, the advantages and disadvantages of percutaneous screw fixation, as well as the treatment of scaphoid nonunions using different types of cancellous or corticocancellous bone grafts. Yet, to date no studies are available comparing the outcome of rotational stability in screw-fixed scaphoid fractures to angular stable systems. The purpose of this study is to provide reliable data about rotational stability in stabilised scaphoid fractures and to gain information about the rigidity and the stability of the different types of fixation.
Methods: Three groups of different stabilisation methods on standardised scaphoid B2 fractures were tested for rotational stability. Stabilisation was achieved using one or two cannulated compression screws (CCS) or angular stable plating. We performed ten repetitive cycles up to 10°, 20° and 30° rotation, measuring the maximum torque and the average dissipated work at angle level.
Results: Our study showed that rotational stability using a two CCS fixation is significantly (p < 0.05) higher than single CCS fixation. Using the angular stable plate system was also superior to the single CCS (p < 0.05). There was, however, no significant difference between two CCS fixation and angular stable plate fixation.
Conclusion: Even though indications of using screws or plate systems might be different and plate osteosynthesis may be preferable in treatment of dislocated or comminuted fractures as well as for nonunions, our study showed a better rotational stability by choosing more than just one screw for osteosynthesis. Angular stable plating of scaphoid fractures also provides more rotational stability than single CCS fixation. The authors therefore hypothesise higher union rates in scaphoid fractures using more stable fixation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00402-016-2556-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!