De-novo NAD+ synthesis regulates SIRT1-FOXO1 apoptotic pathway in response to NQO1 substrates in lung cancer cells.

Oncotarget

State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.

Published: September 2016

Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308742PMC
http://dx.doi.org/10.18632/oncotarget.11526DOI Listing

Publication Analysis

Top Keywords

de-novo nad+
12
nad+ synthesis
12
response nqo1
12
nqo1 activation
12
lung cancer
8
cancer cells
8
tryptophan metabolism
8
apoptotic signaling
8
synthesis regulates
4
regulates sirt1-foxo1
4

Similar Publications

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Objectives: To examine the effect of the NAD precursor, nicotinic acid (NA), for improving skeletal muscle status in sedentary older people.

Methods: In a double-blind, randomised, placebo-controlled design, 18 sedentary yet otherwise healthy older (65-75 y) males were assigned to 2-weeks of NA (acipimox; 250 mg × 3 daily, n=8) or placebo (PLA, n=10) supplementation. At baseline, and after week 1 and week 2 of supplementation, a battery of functional, metabolic, and molecular readouts were measured.

View Article and Find Full Text PDF

Background: Serine/glycine are critical for the growth and survival of cancer cells. Some cancer cells are more dependent on exogenous serine/glycine than endogenously synthesized serine/glycine. However, the function and underlying mechanisms of exogenous serine/glycine in renal cell carcinoma (RCC) remain unclear.

View Article and Find Full Text PDF

From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis.

Biotechnol Adv

December 2024

Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China. Electronic address:

The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis.

View Article and Find Full Text PDF

Biochemical mechanism underlying the synthesis of PbS nanoparticle and its in-situ photo effect on Shinella zoogloeoides PQ7.

J Hazard Mater

November 2024

Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China. Electronic address:

Metal sulfide nanoparticles (NPs) with semiconductor potentials are valuable bioremediation end-products that attract great research interests. However, biochemical mechanisms underlying their biosynthesis and photo-effects remain elusive. In this study, we found that biofilm lifestyle remarkably improved lead resistance and PbS-NP biosynthesis in Shinella zoogloeoides PQ7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!