AI Article Synopsis

  • Adenosine receptors (A1, A2A, A2B, A3) play a significant role in immune system regulation, and this study investigates their dysregulation in systemic lupus erythematosus (SLE) patients.
  • Analysis of lymphocytes from SLE patients revealed an upregulation of A2A adenosine receptors compared to healthy subjects, which correlated with disease activity and clinical parameters.
  • A2A adenosine receptor activation appears to inhibit inflammation by modulating key pathways and cytokine release, suggesting its potential role in managing SLE.

Article Abstract

Background: Adenosine is a purine nucleoside implicated in the regulation of the innate and adaptive immune systems, acting through its interaction with four cell surface receptors: A1, A2A, A2B, and A3. There is intense interest in understanding how adenosine functions in health and during disease, but surprisingly little is known about the actual role of adenosine-mediated mechanisms in systemic lupus erythematosus (SLE). With this background, the aim of the present study was to test the hypothesis that dysregulation of A1, A2A, A2B, and A3 adenosine receptors (ARs) in lymphocytes of patients with SLE may be involved in the pathogenesis of the disease and to examine the correlations between the status of the ARs and the clinical parameters of SLE.

Methods: ARs were analyzed by performing saturation-binding assays, as well as messenger RNA and Western blot analysis, with lymphocytes of patients with SLE in comparison with healthy subjects. We tested the effect of A2AAR agonists in the nuclear factor kB (NF-kB) pathway and on the release of interferon (IFN)-α; tumor necrosis factor (TNF)-α; and interleukin (IL)-2, IL-6, IL-1β, and IL-10.

Results: In lymphocytes obtained from 80 patients with SLE, A2AARs were upregulated compared with those of 80 age-matched healthy control subjects, while A1, A2B, and A3 ARs were unchanged. A2AAR density was inversely correlated with Systemic Lupus Erythematosus Disease Activity Index 2000 score disease activity through time evaluated according to disease course patterns, serositis, hypocomplementemia, and anti-double-stranded DNA positivity. A2AAR activation inhibited the NF-kB activation pathway and diminished inflammatory cytokines (IFN-α, TNF-α, IL-2, IL-6, IL-1β), but it potentiated the release of anti-inflammatory IL-10.

Conclusions: These data suggest the involvement of A2AARs in the complex pathogenetic network of SLE, acting as a modulator of the inflammatory process. It could represent a compensatory pathway to better counteract disease activity. A2AAR activation significantly reduced the release of proinflammatory cytokines while enhancing those with anti-inflammatory activity, suggesting a potential translational use of A2AAR agonists in SLE pharmacological treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002091PMC
http://dx.doi.org/10.1186/s13075-016-1089-8DOI Listing

Publication Analysis

Top Keywords

disease activity
16
systemic lupus
12
lupus erythematosus
12
lymphocytes patients
12
patients sle
12
a2a a2b
8
a2aar agonists
8
il-2 il-6
8
il-6 il-1β
8
a2aar activation
8

Similar Publications

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

Background: Information exchange regarding the scope and content of health studies is becoming increasingly important. Digital methods, including study websites, can facilitate such an exchange.

Objective: This scoping review aimed to describe how digital information exchange occurs between the public and researchers in health studies.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that , derived from NLRP3, inhibits inflammasome activation.

View Article and Find Full Text PDF

Objective: Although dysregulated inflammation has been postulated as a biological mechanism associated with post-acute sequelae of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection (PASC) and shown to be a correlate and an outcome of PASC, it is unclear whether inflammatory markers can prospectively predict PASC risk. We examined the association of leukocyte count and high-sensitivity C-reactive protein (hsCRP) concentrations, measured ~25 years prior to the coronavirus disease 2019 (COVID-19) pandemic, with PASC, PASC severity, and PASC-associated cognitive outcomes at follow-up among postmenopausal women.

Methods: Using biomarker data from blood specimens collected during pre-pandemic enrollment (1993-1998) and data on 1,237 Women's Health Initiative participants who completed a COVID-19 survey between June 2021 and February 2022, we constructed multivariable regression models that controlled for pertinent characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!