Objective: The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity.

Method: A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls).

Results: The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05).

Conclusion: These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003422PMC
http://dx.doi.org/10.1016/j.jaac.2016.05.020DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
connectivity amygdala
20
visual cortex
20
weaker connectivity
20
primary visual
12
asd group
12
connectivity
11
amygdala
8
children autism
8
autism spectrum
8

Similar Publications

Communal values (i.e., valuing care for and connection with others) are important to individual well-being and societal functioning yet show marked gender differences, with girls valuing communion more than boys do.

View Article and Find Full Text PDF

The evolution of signaling and monitoring in plant-fungal networks.

Proc Natl Acad Sci U S A

January 2025

Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.

Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.

View Article and Find Full Text PDF

The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (EN.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

Spin Chains with Highly Quantum Character through Strong Covalency in CaCrN.

J Am Chem Soc

January 2025

Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!