Background/aim: Oleanolic and ursolic acids (OA and UA) are two pentacyclic triterpenes, ubiquitously spread in plants, previously known for their chemopreventive capacity on different types of cancer. The major pharmacological disadvantage of these phytocompounds is their poor water solubility, which often limits their applicability.

Materials And Methods: Using the interfacial polycondensation combined with spontaneous emulsification technique, polyurethane nanostructures (PU) were synthetized in order to improve this problem. In order to test the in vivo chemopreventive potential of the two pure compounds, as well as the encapsulated compounds in PU used as drug carriers, a chemically-induced skin carcinogenesis model was constructed.

Results: UA and OA have a moderate chemopreventive activity against tumors induced by 7,12-dimethylbenzantracene (DMBA) and 12-O-tetradecanoilphorbol-13-acetate (TPA) application. Incorporation of active agents in PU did not lead to increased chemopreventive effect.

Conclusion: PU is not a suitable formulation of UA and OA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polyurethane nanostructures
8
chemically-induced skin
8
skin carcinogenesis
8
vivo biological
4
biological evaluation
4
evaluation polyurethane
4
nanostructures ursolic
4
ursolic oleanolic
4
oleanolic acids
4
acids chemically-induced
4

Similar Publications

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix.

Soft Matter

December 2024

Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.

Article Synopsis
  • The study addresses challenges in using small-diameter vascular grafts, such as thrombosis and inflammation, by creating a suitable microenvironment through advanced materials.
  • Researchers developed a hybrid material by blending poly(ester-urethane)urea (PEUU) with varying levels of resveratrol, tested these for properties like mechanical strength and biocompatibility, and discovered that resveratrol enhances the performance of the graft.
  • The findings demonstrate that the optimal formulation (P/R-1.0) effectively supports endothelial cell growth and neovascularization, making it a promising candidate for improving vascular graft performance.
View Article and Find Full Text PDF

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis.

View Article and Find Full Text PDF

Background: Chronic venous insufficiency (CVI) is a common disease with a high prevalence. Incompetent venous valves are considered as one of the main causes. Besides compression therapy, various surgical therapies are practiced, whereby the reconstruction of valves is of central importance.

View Article and Find Full Text PDF
Article Synopsis
  • Superhydrophobic surfaces with hierarchical micro/nanostructures, like the developed O-Ph-POSS on fluorinated graphene, achieve high water contact angles (152°) and low surface energy (5.6 mJ/m²), making them highly robust and effective in water-repelling applications.
  • The O-Ph-POSS-FG hybrid demonstrated remarkable oil absorption (200-500 wt%) and was successfully used to coat polyurethane sponges, achieving oil-water separation efficiencies of 90%-99%, even after multiple cycles.
  • Durability tests showed that the sponges maintained superhydrophobic properties over time, retaining effective water contact angles and separation efficiency after one year and multiple mechanical stress tests.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!