Transcription activator-like effector nucleases (TALENs) are a new type of engineered nuclease that is very effective for directed gene disruption in any genome sequence. We investigated the generation of mice with genetic knockout (KO) of the G protein-coupled receptor kinase (GRK) 5 gene by microinjection of TALEN mRNA. TALEN vectors were designed to target exons 1, 3, and 5 of the mouse GRK5 gene. Flow cytometry showed that the activity of the TALEN mRNAs targeted to exons 1, 3, and 5 was 8.7%, 9.7%, and 12.7%, respectively. The TALEN mRNA for exon 5 was injected into the cytoplasm of 180 one-cell embryos. Of the 53 newborns, three (5.6%) were mutant founders (F0) with mutations. Two clones from F028 showed a 45-bp deletion and F039 showed the same biallelic non-frame-shifting 3-bp deletions. Three clones from F041 were shown to possess a combination of frame-shifting 2-bp deletions. All of the mutations were transmitted through the germline but not to all progenies (37.5%, 37.5%, and 57.1% for the F028, F039, and F041 lines, respectively). The homozygote GRK5-KO mice for 28 and 41 lines created on F3 progenies and the homozygous genotype was confirmed by PCR, T7E1 assay and sequencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10495398.2016.1176032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!