Background: We previously reported that offspring heterozygous mice partially lacking endothelial nitric oxide synthase (eNOS) gene, and born to hypertensive eNOS-/- Knockout mother, are hypertensive. We hypothesized that those offspring when placed on high-fat diet (HFD) will undergo altered metabolic programming increasing their risk for developing metabolic syndrome.
Methods: eNOS-/-KO and wild-type mice (eNOS+/+WT) were cross-bred to produce heterozygous offspring: maternal heterozygous (Mat, eNOS-/+), born from hypertensive eNOS-/-KO mothers; and paternal heterozygous (Pat, eNOS-/+), born from normotensive WT mothers. Mat, eNOS-/+ and Pat, eNOS-/+ female were allocated to HFD or control diet (CD) until 8 weeks of age. Then a metabolic profile was obtained: weight, glucose/insulin tolerance test (GTT, ITT), systolic blood pressure (SBP), serum fasting levels of insulin, adiponectin, leptin, and a lipid panel.
Results: Weight was not different between all offspring within each diet. GTT curve was higher in Mat, eNOS-/+ vs. Pat, eNOS-/+ offspring on both diet (P < 0.001). In ITT, glucose level at 15 minutes was higher in Mat, eNOS-/+ on HFD. Insulin level was increased in Mat, eNOS-/+ vs. Pat, eNOS-/+ on either diet. SBP was elevated in Mat, eNOS-/+ vs. Pat, eNOS-/+ on CD and was further raised in Mat, eNOS-/+ offspring on HFD (P < 0.001). No other differences were seen except for lower high-density lipoprotein levels in Mat, eNOS-/+ fed HFD (P < 0.003).
Conclusions: Mat, eNOS-/+ offspring exposed in utero to maternal hypertension and fed HFD postnatally have increased susceptibility for metabolic abnormalities. Thus, maternal HTN is a risk factor for altered fetal metabolic programming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajh/hpw088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!