Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Niemann-Pick type C (NPC) disease is characterized by lysosomal accumulation of cholesterol. Interestingly, NPC patients' brains also show increased levels of amyloid-β (Aβ) peptide, a key protein in Alzheimer's disease pathogenesis. We previously reported that the c-Abl tyrosine kinase is active in NPC neurons and in AD animal models and that Imatinib, a specific c-Abl inhibitor, decreased the amyloid burden in brains of the AD mouse model. Active c-Abl was shown to interact with the APP cytosolic domain, but the relevance of this interaction to APP processing has yet to be defined.
Results: In this work we show that c-Abl inhibition reduces APP amyloidogenic cleavage in NPC cells overexpressing APP. Indeed, we found that levels of the Aβ oligomers and the carboxy-terminal fragment βCTF were decreased when the cells were treated with Imatinib and upon shRNA-mediated c-Abl knockdown. Moreover, Imatinib decreased APP amyloidogenic processing in the brain of an NPC mouse model. In addition, we found decreased levels of βCTF in neuronal cultures from c-Abl null mice. We demonstrate that c-Abl directly interacts with APP, that c-Abl inhibition prevents this interaction, and that Tyr682 in the APP cytoplasmic tail is essential for this interaction. More importantly, we found that c-Abl inhibition by Imatinib significantly inhibits the interaction between APP and BACE1.
Conclusion: We conclude that c-Abl activity facilitates the APP-BACE1 interaction, thereby promoting amyloidogenic processing of APP. Thus, inhibition of c-Abl could be a pharmacological target for preventing the injurious effects of increased Aβ levels in NPC disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2016.08.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!