Paenibacillusoryzae sp. nov., isolated from rice roots.

Int J Syst Evol Microbiol

Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.

Published: December 2016

A novel endophytic bacterium, strain 1DrF-4T, isolated from rice roots, was characterized on the basis of its phenotypic characteristics and genotypic information. The novel strain was Gram-positive-staining, endospore-forming, facultatively anaerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1DrF-4T formed a monophyletic clade within the genus Paenibacillus. The most phylogenetically related species was Paenibacillus pinesoli KACC 17472T, with which strain 1DrF-4T showed 16S rRNA gene sequence similarity of 95.2 %. 16S rRNA gene sequence similarities with type strains of other species of the genus Paenibacillus were less than 95 %. The predominant cellular fatty acids were anteiso-C15 : 0 (61.1 %) and C16 : 0 (11.1 %), which is one of the characteristic traits of the genus Paenibacillus. The quinone system contained exclusively menaquinone MK-7. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and an unknown phospholipid. The DNA G+C content was 50.16 mol%, which was within the range reported for species of the genus Paenibacillus. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1DrF-4T (=ACCC 19927T=JCM 30486T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillusoryzae sp. nov. is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijsem.0.001459DOI Listing

Publication Analysis

Top Keywords

genus paenibacillus
20
strain 1drf-4t
16
16s rrna
12
rrna gene
12
species genus
12
paenibacillusoryzae nov
8
isolated rice
8
rice roots
8
gene sequence
8
paenibacillus
6

Similar Publications

Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.

View Article and Find Full Text PDF

The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.

View Article and Find Full Text PDF

Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in NBRC3020 Strain.

ACS Chem Biol

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.

Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from USE31 and pddA from NBRC15115), which remain exceedingly rare.

View Article and Find Full Text PDF

Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico.

BMC Microbiol

January 2025

Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

Background: Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications.

View Article and Find Full Text PDF

Background: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!