Motile archaea swim using a rotary filament, the archaellum, a surface appendage that resembles bacterial flagella structurally, but is homologous to bacterial type IV pili. Little is known about the mechanism by which archaella produce motility. To gain insights into this mechanism, we characterized archaellar function in the model organism Halobacterium salinarum. Three-dimensional tracking of quantum dots enabled visualization of the left-handed corkscrewing of archaea in detail. An advanced analysis method combined with total internal reflection fluorescence microscopy, termed cross-kymography, was developed and revealed a right-handed helical structure of archaella with a rotation speed of 23 ± 5 Hz. Using these structural and kinetic parameters, we computationally reproduced the swimming and precession motion with a hydrodynamic model and estimated the archaellar motor torque to be 50 pN nm. Finally, in a tethered-cell assay, we observed intermittent pauses during rotation with ∼36° or 60° intervals, which we speculate may be a unitary step consuming a single adenosine triphosphate molecule, which supplies chemical energy of 80 pN nm when hydrolysed. From an estimate of the energy input as ten or six adenosine triphosphates per revolution, the efficiency of the motor is calculated to be ∼6-10%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmicrobiol.2016.148 | DOI Listing |
mSystems
January 2025
Department of Biology, Duke University, Durham, North Carolina, USA.
Unlabelled: Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species and serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades.
View Article and Find Full Text PDFHeliyon
December 2024
Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia.
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with , were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia.
The primary photoisomerization reactions of the all- to 13- and 11- to all- retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all- form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of and RPSB isomers in both the initial forms and first photoproducts of microbial rhodopsin 2 (KR2) and bacteriorhodopsin (BR), and animal visual rhodopsin (Rho).
View Article and Find Full Text PDFAcc Chem Res
November 2024
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Molecules
October 2024
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!