Premotor and Motor Cortices Encode Reward.

PLoS One

Sensorimotor Performance Program, Rehabilitation Institute of Chicago, Illinois, 60611, United States of America.

Published: August 2017

Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001708PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160851PLOS

Publication Analysis

Top Keywords

motor cortices
8
encode reward
8
reward
7
premotor motor
4
cortices encode
4
reward rewards
4
rewards associated
4
associated actions
4
actions critical
4
critical motivation
4

Similar Publications

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

Distinct role of primate DLPFC and LIP in hierarchical control of learned saccade sequences.

iScience

January 2025

Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China.

Learned action sequences are suggested to be organized hierarchically, but how the various hierarchical levels are processed by different cortical regions remains largely unknown. By training monkeys to perform heterogeneous saccade sequences, we investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the lateral intraparietal cortex (LIP) in sequence planning and execution. The electrophysiological recording revealed that sequence-level initiation information was mostly signaled by DLPFC neurons, whereas subsequence-level transition was largely encoded by LIP neurons.

View Article and Find Full Text PDF

Background: Isolated rapid-eye movement (REM) sleep behavior disorder (iRBD) is characterized by abnormal behaviors in REM sleep and is considered as a prodromal symptom of alpha-synucleinopathies. Resting-state functional magnetic resonance imaging (rsfMRI) studies have unveiled altered functional connectivity (rsFC) in patients with iRBD. However, the associations between intra- and inter-network rsFC with clinical symptoms and neuropsychological functioning in iRBD remain unclear.

View Article and Find Full Text PDF

Imaging Brain Networks: Insights into Mechanisms of Temporomandibular Disorders.

J Dent Res

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Temporomandibular disorders are a group of craniomaxillofacial disorders mainly characterized by pain and motor dysfunction of the temporomandibular joints and surrounding masticatory muscles. Clinically, patients with temporomandibular disorders often display central nervous system dysfunction, such as negative mood disorders, but the underlying cause remains unclear. Recent developments in neuroimaging techniques have facilitated new understanding.

View Article and Find Full Text PDF

Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) often share multiple similar symptoms and are highly comorbid; however, the common and distinct brain neuroanatomy of these two diseases are unclear. The current study attempted to identify the overlapping and different gray matter volume (GMV) between AN and OCD. We conducted a voxel-wise meta-analysis of GMV using the latest Seed-based d Mapping with Permutation of Subject Images Toolbox (SDM-PSI) software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!